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Abstract. We characterize the class of those closed convex sets which have a barrier cone with
a nonempty interior. As a consequence, we describe the set of those proper extended-real-valued
functionals for which the domain of their Fenchel conjugate has a nonempty interior. As an
application, we study the stability of the solution set of a semi-coercive variational inequality.
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1. Introduction

Closed convex sets for which the barrier cone has a nonempty interior, as well
as proper extended-real-valued functionals for which the domain of their Fenchel
conjugate is nonempty, are mathematical objects currently encountered in various
areas of optimization theory and variational analysis (see for instance the class
of well-behaved functions introduced by Auslender and Crouzeix in [5]).
This article provides, in the framework of general reflexive Banach spaces,

geometric and analytical characterizations for this type of sets and functionals
and extends in this way earlier partial results obtained in [3] in the context of
separable Banach spaces.
Section 2 is dedicated to the study of the class of closed convex sets which

have a barrier cone with a nonempty interior. Theorem 2.1 states that this class
is identical to the class of closed convex sets having a geometrical property
called well-positionedness. An analytical characterization of well-positioned sets
– Proposition 2.1 – is equally obtained.
Similar results are deduced in Section 3 for functionals. A geometric

characterization, valid for all the proper extended-real-valued functionals, and an
analytical one, valid for convex lower semi-continuous functionals constitute the
main results of the section.
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The article is completed by an application of Theorems 3.1 and 3.2 to the theory
of variational inequalities. More precisely, the above mentioned results allow us
to describe the class of all semi-coercive variational inequalities which have a
nonempty solution set for any sufficiently small uniform perturbations of their data.

2. Well-positioned Sets

Unless otherwise stated we suppose that X is a reflexive Banach space and we
denote by �·�·� the duality pairing between X and its continuous dual X∗, by �·�
and �·�∗ the norm and the dual norm on X and X∗, respectively, and by j� X∗→X
the duality mapping given by �f �j�f 	�=�f�2∗��j�f 	�=�f�∗, (see for example
[8]). Due to a well-known renorming Theorem of Troyanski (see e.g. [7]) we can
(and will) assume that the norms on X and X∗ are locally uniformly rotund. This
implies that the duality mapping j is single-valued and norm-to-norm continuous.
As standard, co A, co A� span A are the convex, the closed convex hull and the
closed linear span of the set A⊂X. Finally, we use the symbols �X��X∗ and
‘⇀’ for the open unit balls in X and X∗ and the weak convergence, respectively.
Following the usual terminology used in convex analysis (see Rockafellar [10]
as a reference book), we recall that the recession cone of a closed convex C is
the closed convex cone C	 defined by

C	=�v∈X� ∀�>0� x0∈C� x0+�v∈C��
If �� X→�∪+�	� is an extended real-valued function, dom � is the set of all
x∈X for which ��x	 is finite, and we say that � is proper if dom � �=∅. When
� is a proper lower semi-continuous convex function, the recession function �	
of � is the proper lower semi-continuous convex function whose epigraph is the
recession cone of the epigraph of �, i.e., epi�	=�epi�		. Equivalently

�	�x	= lim
t→+	

��x0+tx	
t

�

where x0 is any element such that ��x0	 is finite.
We denote by Ker�	=�u∈X� �	�u	=0�, and we define the barrier cone of

a set C in X as the set of all linear continuous functionals bounded from above
on C, i.e.,

��C	=
{
g∈X∗ �sup

x∈C
�g�x�<+	

}
�

Finally, C�=�g∈X∗ ��g�x��0 ∀x∈X� will denote the negative polar cone of
the convex cone C which is C⊥ when C is a closed subspace. As well-known,
��C	�=C	 and by the Bipolar Theorem ��C	=�C		

�. A convex set C is called
linearly bounded if C	=�0�.
DEFINITION 2.1. We say that a set C⊂X is well-positioned, if there exists
x0∈X and g∈X∗ such that:

�g�x−x0���x−x0�� ∀x∈C� (2.1)
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Equivalently, if we denote by Cg �=�x∈X� �g�x���x��, C is well-positioned
if and only if C⊂x0+Cg for some x0∈X and g∈X∗.

Remark 2.1. If a nonempty convex set C is well-positioned, then Int�C		
� is

nonempty. However, the converse fails to be true in infinite dimension.

Indeed, by definition we know that C⊂u0+Cg for some u0∈X and g∈X∗.
Hence,

C	⊂�u∈X ��g�u���u�� �=Cg�
This implies that

�Cg	
�⊂�C		

��

and, as

−g+�X∗ ⊂�Cg	��
we deduce that Int�C		

� �=∅.
Finally, remark that every unbounded linearly bounded closed convex set

provides a counterexample for the converse.

LEMMA 2.1. Let C be a closed convex set containing no lines, and y∈C. For
every R>0, let us define

MC
y�R=

{
x−y
�x−y� � x∈C��x−y��R

}
�

The following two facts are equivalent:

(i) C is well-positioned;
(ii) there is R>0 such that 0 �∈ co�MC

y�R	.
Proof of Lemma 2�1� �i	�⇒�ii	.
Let C be a well-positioned closed convex set, �y� an element of C, and �x0�

and g two elements of X and X∗ such that

�g�x−x0���x−x0�� ∀x∈C� (2.2)

The first part of the proof consists of proving that if R satisfies

R>2�1+�g�∗	�y−x0��
then 0 does not belong to co�MC

y�R	.
Indeed, for every x∈C such that �x−y�>2�1+�g�∗	�y−x0�, relation (2.2)

implies that〈
g�

x−y
�x−y�

〉
�

�x−x0�
�x−y� −

〈
g�
y−x0
�x−y�

〉

� 1− �y−x0�
�x−y� −�g�∗

�y−x0�
�x−y�

= 1−�1+�g�∗	
�y−x0�
�x−y� �

1
2
�
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This yields,

x∈ co�MC
y�R	�⇒�g�x�� 1

2
�

and therefore 0�co�MC
y�R	.

�ii	�⇒�i	 Now, let us consider a closed convex set C and fix y∈C such that
0�co�MC

y�R	 for some R>0. We claim that if z is the element of minimal norm
in the set coMC

y�R and if h=j−1�z	, then〈
3h

�z�2 �x−
(
y− 2R�z�z

)〉
�

∥∥∥∥x−
(
y− 2R�z�z

)∥∥∥∥� ∀x∈C� (2.3)

Indeed, for every x∈C such that �x−y��R, the vector x−y
�x−y� belongs to co�M

C
y�R	,

and by the definition of z we have,
〈
h� x−y

�x−y�
〉
��z�2. Accordingly, for each x∈C

such that �x−y��R, we have〈
3h

�z�2 �x−
(
y− 2R�z�z

)〉
� 3�x−y�+3 2R�z�
� 3

(
�x−y�+ 2R�z��z�

)

�

∥∥∥∥x−
(
y− 2R�z�z

)∥∥∥∥�
If �x−y��R, then〈

3h
�z�2 �x−y

〉
�− 3

�z�2 �h�∗�x−y��− 3R�z� �
Hence,〈

3h

�z�2 �x−
(
y− 2R�z�z

)〉
� − 3R�z� +

6R
�z� =

3R
�z�

� 3R=R+2R��x−y�+ 2R�z��z�

�

∥∥∥∥x−
(
y− 2R�z�z

)∥∥∥∥ ∀x∈y+R�X�

The two previous relations prove (2.3). Setting g= 3h
�z�2 and x0=y− 2R

�z�z in (2.3)
we obtain (2.1), completing the proof of Lemma 2.1. �

The following result provides an analytical definition of well-positioned sets.

PROPOSITION 2.1. A nonempty closed convex set C of a reflexive Banach space
X is well-positioned if and only if the following two assumptions are satisfied:

(a) C contains no lines;
(b) � ∃�xn�n∈�⊂C��xn�→+	, such that xn

�xn�⇀0.
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Remark 2.2. Proposition 2.1 subsumes the fact that when X is finite
dimensional, a nonempty closed convex set is well-positioned if and only if C	
is pointed, i.e., C	∩−C	=�0�. In particular, every compact and convex set is
well-positioned in �n.

Proof of Proposition 2.1. Let us first prove that every well-positioned convex
closed set C satisfies assumptions �a	 and �b	. As C is well-positioned, there are
x0 in X and g in X

∗ such that C⊂x0+Cg . By the way of obtaining a contradiction,
suppose that C contains at least a line, that is, there are x1 and v in X��v�=1,
such that

x1+�v∈C� ∀�∈��
Accordingly,

��g�v�+�g�x1−x0� = �g�x1+�v−x0���x1+�v−x0�
� ���−�x1−x0�� ∀�∈��

For �=n and �=−n, we obtain respectively
n�g�v�+�g�x1−x0��n−�x1−x0� and

−n�g�v�+�g�x1−x0��n−�x1−x0��
Summing up the two above relations, we deduce that

�g�x1−x0�+�x1−x0��n ∀n∈�∗�

a contradiction establishing assumption (a).
Now, let us suppose that the assumption (b) fails, i.e., there exists a sequence

�xn	n∈�∗ such that �xn�→	 and xn/�xn�⇀0. Since C is well-positioned, we
obtain

0= lim
n→	

�g�xn/�xn��= lim
n→	

〈
g�
xn−x0
�xn�

〉
� lim
n→	

�xn−x0�
�xn�

=1�

a contradiction. Hence, assumption (b) is satisfied, establishing the fact that every
well-positioned closed convex set fulfills assumptions (a) and (b).
Conversely, let us consider a closed convex set C satisfying relations (a) and

(b), and suppose that C is not well-positioned. Pick y∈C; Lemma 2.1 implies
that 0∈ co�MC

y�n	 for every n∈�∗. For every integer n, select Un, a finite or
countable subset of MC

y�n such that 0∈co�Un	, and thus Rn⊂C\�y+n�X	 where
Rn is such that Un=� x

�x� � x∈Rn�. Let X1=span�y�∪n∈�∗Rn	 and K=C∩X1. The
definitions of X1 and K imply that, for every n∈�∗, Un⊆MK

y�n, and therefore

0∈co�Un	⊆ co�MK
y�n	�
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As MK
y�R1

⊆MK
y�R2
whenever R1�R2, the previous relation yields that 0∈co�MK

y�R	
for every R>0; from Lemma 2.1 it follows that the closed convex set K=C∩X1
is not well-positioned. As X1 is separable, and K contains no lines (being a subset
of C which, by virtue of assumption (a), contains no lines), a well-known result
of Klee ([9]) implies that there is f ∈��K	 such that

�f �w�<0 ∀w∈K	� w �=0� (2.4)

Let us prove the following technical result.

LEMMA 2.2. Let C be a closed convex set of a reflexive Banach space X. Sup-
pose that for some g∈X∗\�0� and t∈� such that t<supx∈C�g�x�, the set Cg�t=
�x∈C� �g�x�� t� is bounded. Then, the set C is well-positioned.

Proof of Lemma 2.2. Let x̄ be an element of C such that t<�g�x̄�. Since
Cg�t is bounded, there is r >0 such that Cg�t⊂r�X , and thus Cg�t⊂�x̄+2r�X	.
Accordingly, for every x∈C\�x̄+2r�X	, we have �g�x�< t and consequently,

0<
t−�g�x�
�g�x̄−x�<1�

Thus,

z�x	= t−�g�x�
�g�x̄−x� x̄+

�g�x̄�−t
�g�x̄−x�x

is a convex combination of x and x̄ and, accordingly, an element of C. Moreover,
�g�z�x	�= t and therefore z�x	 necessarily belongs to Cg�t. Consequently,

0<�x̄−z�x	��2r�
that is

�g�x̄�−t
�g�x̄−x��x̄−x��2r� ∀x∈C\�x̄+2r�X	� (2.5)

Relation (2.5) implies that
〈
g�

x− x̄
�x− x̄�

〉
�
t−�g�x̄�
2r

<0 ∀x∈C� �x− x̄��2r�

Consequently, 0�co�MC
x̄�2r 	, and therefore (see Lemma 2.1) C is well-positioned.

The proof of Lemma 2.2 is thereby completed. �

As K is not well-positioned, from Lemma 2.2 it follows that the set

Kf�t=�x∈K� t��f �x��
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is unbounded for every t<supx∈K�f �x�. Accordingly, there is a sequence
�#n	n∈�∗ ⊂Kf�t such that �#n�→	. Let w be a weak cluster point of the
bounded sequence

(
#n
�#n�

)
n∈�∗ . As �#n�→	, we have w∈�Kf�t		, and w �=0

by virtue of assumption (b). For every s>0� y+sw∈Kf�t, so
t��f �y+sw��sup

x∈K
�f �x� ∀s>0�

that is

t−�f �y�
s

��f �w�� supx∈K�f �x�−�f �y�
s

∀s>0�

relation which implies that �f �w�=0. The contradiction between the previous
equality and relation (2.4) completes the proof of Proposition 2.1. �

We are now in position to state the main property of the well-positioned sets.

THEOREM 2.1. Let C be a nonempty subset of a reflexive Banach space X. The
following two conditions are equivalent:

(1) The barrier cone of C has a nonempty interior;
(2) C is well-positioned.

Moreover, if Int��C	 �=∅, then
Int��C	= Int�C		

�� (2.6)
Proof of Theorem 2.1. �2	�⇒�1	� we prove that ∅ �= Int�C		

�⊆��C	.

By Remark 2.1, pick g∈ Int�C		
�. In order to prove that g∈��C	, we first

need to establish a technical result.

LEMMA 2.3. Suppose C is well-positioned. Then, for every g∈ Int�C		
�, there

are Rg�%g >0 such that

�g�x��Rg−%g�x�� ∀x∈C� (2.7)
Proof of Lemma 2.3. Let us denote by Cf �=�x∈X � �f �x���x��. Let x0 and

f such that C⊂x0+Cf , and take %g such that g+2�f�∗%g�X∗ ⊂�C		
�(%g exists

since g∈ Int�C		
�). For the purpose of obtaining a contradiction, suppose that

there exists a sequence �xn	n∈�∗ in C such that

�g�xn��n−%g�xn�� (2.8)

Noticing that

��g�∗+%g	�xn���g�xn�+%g�xn��n�
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we deduce that limn→	�xn�=+	. We may therefore define tn �= 1
�xn� . Let w be

a weak cluster point of the sequence �tnxn	n∈�. Multiplying relation (2.8) by tn
and passing to the limit as n→+	, we obtain

�g�w�� lim inf
n→	

ntn−%g�−%g� (2.9)

Since g+2�f�∗%g�X∗ ⊂�C		
� and w∈C	, we derive

�g+h�w��0� for all h∈X∗� �h�∗�2�f�∗%g�
This yields

�g�w��−2�f�∗%g�w�� (2.10)

We combine (2.9) and (2.10) to obtain

−%g��g�w��−2�f�∗%g�w��
that is

1
2
��f�∗�w�� (2.11)

On the other hand, when multiplied with tn, relation

�f �xn−x0���xn−x0���xn�−�x0�
yields

�f �tnxn−tnx0��1−tn�x0��
Passing to the limit as n→+	 we obtain

�f �w��1� (2.12)

Combining relations (2.11) and (2.12) gives

1
2
��f�∗�w���f �w��1�

a contradiction, and the proof of Lemma 2.3 is achieved. �

Inequality (2.7) implies that for all x∈C we have �g�x��Rg , which yields
g∈��C	, and therefore

Int�C		
�⊂��C	� (2.13)

As a result, Int��C	 �=∅, and the first part of the proof is completed.
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Now, let us prove that �1	⇒�2	: By contradiction, suppose that Int ��C	 �=∅
and C fails to be well-positioned. Pick g in Int ��C	 and t∈� such that t<�g�x̄�
for some x̄∈C. By Lemma 2.2, the set

Cg�t=�x∈C �t��g�x��
is unbounded. Hence, by the Banach-Steinhaus Theorem, there exists h∈X∗ and
xn∈Cg�t such that:

�h�xn��n� ∀n∈��
For every fixed &>0, we have

�g+&h�xn�� t+&n�
Therefore,

g+&h���C	� ∀&>0�
Hence,

g� Int��C	�
and the proof of the equivalence between (1) and (2) of Theorem 2.1 is thereby
completed. In order to prove equality (2.6), let us remark that ��C	⊆�C		

�, so

Int��C	⊆ Int�C		
� (2.14)

for every set C. If Int��C	 �=∅, then C is well-positioned, so relation (2.13)
holds; relation (2.6) follows from relations (2.14) and (2.13). �

Theorem 2.1 and Lemma 2.3 have the following immediate consequence.

COROLLARY 2.1. For every f ∈ Int��C	, there are Rf �%f >0 such that
�f �u��Rf−%f�u�� ∀u∈C� (2.15)

3. Well-positioned Functionals

When endowed with the standard norm

�·�X×� �X×�→�+� ��x�'	�X×� �=
√�x�2+'2� ∀�x�'	∈X×��

the linear space X×� becomes a reflexive Banach space whose continuous dual
is X∗×� endowed with the standard norm:

�·�X∗×�� X
∗×�→�+� ��f ��	�X∗×� �=

√
�f�2∗+�2� ∀�f ��	∈X∗×�(



346 S. ADLY ET AL.

the duality pairing is given by

��f ��	��x�'	�X∗×��X×�=�f �x�+�'� ∀�f ��	∈X∗×�� �x�'	∈X×��

and J � X∗×�→X×�, given by

J�f ��	=�j�f 	��	� ∀�f ��	∈X∗×��

is the duality mapping between X∗×� and X×�. Given an extended-real valued
function *� X→�∪�+	�, recall that the Fenchel conjugate of * is the function
* ∗� X∗→�∪�+	� given by

* ∗�f 	 �=sup
x∈X
��f �x�−*�x	��

Obviously, the domain of * ∗ is connected to the barrier cone of the epigraph of
* through the following equivalence

g∈ Int dom* ∗⇐⇒�g�−1	∈��epi*	�
This yields, dom* ∗×�−1� is the intersection of the barrier cone of epi * with
the hyperplane X∗×�−1� of X∗×��

dom* ∗×�−1�=��epi*	∩�X∗×�−1�	� (3.16)

Standard convex analysis techniques allow us to prove that the domain of the
Fenchel conjugate is nonempty if and only if the barrier cone of the epigraph has
a nonempty interior.

DEFINITION 3.1. We say that a proper convex lower semicontinuous functional
*� X→�∪�+	� is well-positioned if the epigraph of * ,

epi* =��x��	∈X×� ���*�x	��

is a well-positioned subset of X×�.

Theorem 2.1 may now be rephrased into the following geometrical character-
ization of functionals for which the domain of their Fenchel conjugate has a non
void interior.

PROPOSITION 3.1. Let * be a proper lower semicontinuous convex function
on a reflexive Banach space. Then,

Int dom* ∗ �=∅⇐⇒* is well-positioned�

In the case of proper lower semi-continuous convex extended-real-valued func-
tionals which are bounded from below, Proposition 2.1 provides an analytical
characterization of the well-positionedness which is easier to use.
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THEOREM 3.1. A proper lower semi-continuous convex functional * defined
on a reflexive Banach space X is well-positioned if and only if the two following
assumptions hold:

(a) Ker�*		 contains no lines;
(b) � ∃�xn	n∈�∗Cdom*��xn�→+	, such that xn

�xn�⇀0 and
*�xn	

�xn� →0.
Proof of Theorem 3�1. By virtue of Proposition 2.1, we have only to prove

that statement (a) is equivalent to �a∗	epi* contains no lines, and that state-
ment (b) is equivalent to �b∗	 � ∃�xn�'n	∈epi*���xn�'n	�X×�→	, such that

�xn�'n	

��xn�'n	�X×�
⇀0.

Given a closed convex set C, let L�C	 denote the maximal closed linear space
contained in C, i.e.,

L�C	=C	∩�−C		�

For C=epi* , we have
L�epi*	=�epi*		∩�−�epi*			=epi�*		∩�−epi�*			(

as * is bounded from below, *	�0. Hence,

epi�*		∩�−epi�*			=Ker�*		×�0�∩�−Ker�*		×�0�	�
Consequently,

L�epi*	=L�Ker�*			×�0��
Hence, L�epi*	=�0� if and only if L�Ker *		=�0�. Thus (a) is equivalent to
�a∗	. In order to prove the equivalence between (b) and �b∗	, let us first consider
a sequence �xn�'n	n∈�∗ ∈epi* such that

��xn�'n	�X×�→	 and
�xn�'n	

��xn�'n	�X×�

⇀0�

As

lim
n→	

〈
f �

xn
��xn�'n	�X×�

〉
= lim
n→	

〈
�f �0	�

�xn�'n	

��xn�'n	�X×�

〉
X∗×��X×�

=0�

for every f ∈X∗, it follows that

xn
��xn�'n	�X×�

⇀0� (3.17)

On the other side,

lim
n→	

'n
��xn�'n	�X×�

= lim
n→	

〈
�0�1	�

�xn�'n	

��xn�'n	�X×�

〉
X∗×��X×�

=0� (3.18)
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Hence,

lim
n→	

�xn�
��xn�'n	�X×�

=1� (3.19)

Since ��xn�'n	�X×�→+	, it follows from (3.19) that
lim
n→	

�xn�=+	( (3.20)

from (3.17) and (3.19) we obtain

xn
�xn�

= ��xn�'n	�X×�

�xn�
xn

��xn�'n	�X×�

⇀1�0=0� (3.21)

The functional * is bounded from below, so there is k∈� such that
k�*�xn	�'n�

Finally, from (3.18) and (3.21) we get

0= lim
n→	

k

�xn�
� lim
n→	

*�xn	

�xn�
� lim
n→	

'n
�xn�

=0� (3.22)

Relations (3.20), (3.21) and (3.22) prove that whenever the sequence
��xn�'n		n∈�∗ fulfills assumption �b∗	, the sequence �xn	n∈�∗ satisfies (b); con-
sequently, (b) implies (b∗). Let now �xn	n∈�∗ ∈dom* such that �xn�→+	,
xn
�xn�⇀0 and

*�xn	

�xn� →0. As ��xn�*�xn		�X×���xn�, it follows that
lim
n→	

��xn�*�xn		�X×�=+	( (3.23)

as *�xn	

�xn� →0, we derive

lim
n→	

�xn�
��xn�*�xn		�X×�

=1� (3.24)

Let �f ��	∈X∗×�; from (3.23) and (3.24) it follows that

lim
n→	

〈
�f ��	�

�xn�*�xn		

��xn�*�xn		�X×�

〉

= lim
n→	

(〈
f �

xn
�xn�

〉 �xn�
��xn�*�xn		�X×�

)
+

+� lim
n→	

(
*�xn	

�xn�
�xn�

��xn�*�xn		�X×�

)
=0�1+�·0 ·1=0�
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Consequently,

�xn�*�xn		

��xn�*�xn		�X×�

⇀0� (3.25)

Relations (3.23) and (3.25) show that the sequence ��xn�*�xn			n∈�∗ fulfills �b∗	
provided that the sequence �xn	n∈�∗ satisfies (b). Accordingly, �b∗	 implies (b),
and the proof of Theorem 3.1 is completed. �

Let f ∈ Int��*	. By virtue of Corollary 2.1, we deduce the existence of two
constants Rf and %f >0 such that

��f �−1	��u��	��X∗×��X×�	�Rf−%f��u��	�X×�� ∀u∈dom*� ��*�u	�
As ��u��	�X×���u�, by setting �=*�u	 in the previous inequality we derive

f ∈ Int dom* ∗�⇒∃%f �Rf >0 s�t� �f �u�+%f�u�Rf �Rf+*�u	�
∀u∈X� (3.26)

We have thus proved the following result.

THEOREM 3.2. g∈ Int dom* ∗ if and only if the functional *−g is coercive,
i.e.,

liminf
�x�→+	

*�x	−�g�x�
�x� >0�

Remark 3.1. From the previous result it follows that 0 belongs to the interior
of the domain of * ∗ (in other words this means that * is well-behaved) if and
only if * is coercive.

4. Stability of the Existence of the Solution for Semi-coercive
Variational Inequalities

In various problems in optimization and in variational analysis (see the case
of well-behaved functionals, for instance), it is a natural question to ask under
which conditions the interior of the domain of the Fenchel conjugate of a given
functional is nonempty. One of the problem leading to such conditions concerns
(see [3] and [4]) the stability of the solution set of a semi-coercive variational
inequality
VI�A�f ���K	: find u∈K∩ dom� such that

�Au−f �v−u�+��v	−��u	�0� ∀v∈K� (4.27)
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where K is a closed convex set in a reflexive Banach space X, f is a continuous
linear functional on X, �� X→�∪�+	� is a proper lower semi-continuous and
convex functional that we assume to be bounded from below, K∩dom� �=∅,
where dom��=�x∈X� ��x	<+	�, and A is a semi-coercive operator from X
to X∗, that is

�Av−Au�v−u��/ �distU �v−u		2 ∀u�v∈X
A�x+u	=A�x	 ∀x∈X and u∈U� and A�X	⊆U⊥� (4.28)

for some positive constant / and some closed subspace U of X. We suppose
furthermore that A is pseudomonotone in the sense of Brezis ([6], p. 142).
In other words, we characterize all data �A�f ���K	 for which there is some

&>0 such that the variational inequality VI�A&�f&��&�K&	 has solutions for every
instance involving a bounded and semi-coercive operator A&, a linear continuous
functional f&, a proper lower semi-continuous and convex functional �& that is
bounded from below, and a closed convex set K& such that K&∩dom� �=∅, and

�A�x	−A&�x	�∗<&� ∀x∈X
�f−f&�∗<&�
K⊂K&+&�X and K&⊂K+&�X�
��x	−&��&�x	���x	+&� ∀x∈X�

In this framework, it was proved ([3] Proposition 3.1) that a sufficient and
necessary condition ensuring the uniform stability of the solution set of the given
variational inequality is that f belongs to the interior of the domain of the Fenchel
conjugate of an energy-like functional:

Int R�A���K	= Int dom* ∗�

where

R�A���K	=�f ∈X∗�V �I��A�f ���K	 has at least a solution��
is the resolvent set, and

*�x	�=/�distU �x		2+IK�x	+��x	 ∀x∈X�
IK denoting the indicator function of K, i.e., IK�x	=0 if x∈K and +	 else.
Theorem 3.1 may now be used to obtain the following analytical characteriza-

tion of the stability of the solution set.
The variational inequality V �I��A&�f&��&�K&	 has solutions for every suffi-

ciently small uniform perturbations A&�f&��&�K&, if and only if the following
three conditions hold:

(i) The set U ∩K	∩Ker��		 contains no lines;
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(ii) There is no sequence �xn	n∈�∈K such that
xn
�xn�

⇀0 and
/�distU �xn		

2+��xn	
�xn�

→0(
and

(iii) �f �u�<�	�u	� ∀u∈�K	∩U	� u �=0.
From Theorem 3.2, it follows ([3], Corollary 5.1) that the stability of the

existence of a solution is ensured if and only if the functional *−f is coercive.
This result relates the stability of the solution of a variational inequality and

the coerciveness of an associated energy-type functional.
We conclude by noticing that the stable states for a semi-coercive inequality

are precisely those which, due to the coercivity of the associated energy, are
closer to the coercive case. It is our opinion that this link between stability and
coercivity (already remarked in other contexts, see [1] for example) is not casual,
being rather a very general feature.
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